Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

نویسندگان

  • Angela Kunoth
  • Christoph Schwab
چکیده

This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the number of parameters may be countable infinite, i.e., σj with j ∈ N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj . Polynomial approximations of state and control in terms of the possibly countably many stochastic coordinates σj will be used to establish sparsity of polynomial “generalized polynomial chaos (gpc)” expansions of the state and the control with respect to the parameter sequence (σj)j≥1. These imply, in particular, convergence rates of best N -term truncations of these expansions. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes as in [SG11, G] for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an apriori error analysis for sparse tensor, space-time discretizations. The problem is reduced to a parametric family of deterministic initial boundary value problems on an infinite dimensional parameterspac...

متن کامل

Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an a priori error analysis for N-term generalized polynomial chaos approximations in a scale of Bochner spaces. The problem is reduced to a parametric family of deterministic initial boundary value problems o...

متن کامل

Error Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs

We consider fully discrete finite element approximations of a Robin optimal boundary control problem, constrained by linear parabolic PDEs with rough initial data. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for...

متن کامل

Optimal Control of Linear

The regularity of Lagrange multipliers for state-constrained optimal control problems belongs to the basic questions of control theory. Here, we investigate bottleneck problems arising from optimal control problems for PDEs with certain mixed control-state inequality constraints. We show how to obtain Lagrange multipliers in L p-spaces for linear problems and give an application to linear parab...

متن کامل

Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs

The numerical approximation of parametric partial differential equations D(u, y) = 0 is a computational challenge when the dimension d of of the parameter vector y is large, due to the so-called curse of dimensionality. It was recently shown in [5, 6] that, for a certain class of elliptic PDEs with diffusion coefficients depending on the parameters in an affine manner, there exist polynomial ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013