Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs
نویسندگان
چکیده
This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the number of parameters may be countable infinite, i.e., σj with j ∈ N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj . Polynomial approximations of state and control in terms of the possibly countably many stochastic coordinates σj will be used to establish sparsity of polynomial “generalized polynomial chaos (gpc)” expansions of the state and the control with respect to the parameter sequence (σj)j≥1. These imply, in particular, convergence rates of best N -term truncations of these expansions. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes as in [SG11, G] for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K].
منابع مشابه
Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation
For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an apriori error analysis for sparse tensor, space-time discretizations. The problem is reduced to a parametric family of deterministic initial boundary value problems on an infinite dimensional parameterspac...
متن کاملSparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation
For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an a priori error analysis for N-term generalized polynomial chaos approximations in a scale of Bochner spaces. The problem is reduced to a parametric family of deterministic initial boundary value problems o...
متن کاملError Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs
We consider fully discrete finite element approximations of a Robin optimal boundary control problem, constrained by linear parabolic PDEs with rough initial data. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for...
متن کاملOptimal Control of Linear
The regularity of Lagrange multipliers for state-constrained optimal control problems belongs to the basic questions of control theory. Here, we investigate bottleneck problems arising from optimal control problems for PDEs with certain mixed control-state inequality constraints. We show how to obtain Lagrange multipliers in L p-spaces for linear problems and give an application to linear parab...
متن کاملBreaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs
The numerical approximation of parametric partial differential equations D(u, y) = 0 is a computational challenge when the dimension d of of the parameter vector y is large, due to the so-called curse of dimensionality. It was recently shown in [5, 6] that, for a certain class of elliptic PDEs with diffusion coefficients depending on the parameters in an affine manner, there exist polynomial ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 51 شماره
صفحات -
تاریخ انتشار 2013